Curso Gratis Detección de Objetos
¿Te interesa la visión por computador? ¿Te gustaría conocer qué métodos puedes utilizar para detectar y reconocer objetos en una imagen?
En este curso te introducirás en los principios básicos de cualquier sistema automático de detección y reconocimiento de objetos en imágenes. A lo largo del curso analizaremos diferentes métodos de representación y clasificación que te permitirán abordar casos de aplicación de complejidad creciente. El contenido del curso se estructura a partir de un esquema básico de detección y reconocimiento de objetos que sirve de guía para ir introduciendo tanto los diferentes métodos de extracción de características y representación de la imagen como diferentes alternativas para clasificar una imagen y para localizar todas las instancias de un objeto en la imagen. El temario incluye conceptos básicos de formación de la imagen, la convolución y su aplicación a la detección de contornos, características de regiones, descriptores de imagen (Local Binary Pattern, Histogram of Oriented Gradients, características de Haar) y varios métodos de clasificación (clasificador lineal, Support Vector Machine, Adaboost, Random Forest, Convolutional Neural Network). Finalizar el curso te permitirá: • Diseñar, a partir de un esquema básico común, soluciones adaptadas para diferentes problemas de detección y reconocimiento de objetos en una imagen, • Conocer las principales técnicas para la descripción y clasificación de una imagen, • Conocer las herramientas que permiten el desarrollo de aplicaciones reales de detección y reconocimiento de objetos, para que seas capaz de desarrollar tus propios sistemas de detección y reconocimiento de objetos en múltiples aplicaciones. El curso está orientado tanto a estudiantes universitarios de algún grado relacionado con la informática, la ingeniería o las matemáticas, como a otros estudiantes con conocimientos de programación, interesados en aprender cómo utilizar técnicas de visión por computador para extraer información de las imágenes.
Leave feedback about this